Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Diagnostics (Basel) ; 14(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38337829

ABSTRACT

The Kondo-Fu type of spondyloepiphyseal dysplasia (SEDKF) is a rare skeletal dysplasia caused by homozygous or compound heterozygous mutations in the MBTPS1 gene. The MBTPS1 gene encodes a protein that is involved in the regulation of cholesterol and fatty acid metabolism. Mutations in MBTPS1 can lead to reduced levels of these lipids, which can have a number of effects on development, including skeletal anomalies, growth retardation, and elevated levels of blood lysosomal enzymes. This work reports the case of a 5-year-old girl with SEDKF. The patient had a severely short stature and a number of skeletal anomalies, including kyphosis, pectus carinatum, and reduced bone mineral density. She also had early onset cataracts and inguinal hernias. Genetic testing revealed two novel compound heterozygous variants in the MBTPS1 gene. These variants are predicted to disrupt the function of the MBTPS1 protein, which is consistent with the patient's clinical presentation. This case report adds to the growing body of evidence that mutations in the MBTPS1 gene are causal of SEDKF. We summarized the features of previous reported cases (with age ranges from 4 to 24 years) and identified that 80% had low stature, 70% low weight, 80% had bilateral cataracts and 70% showed Spondyloepiphyseal dysplasia on X-rays. The findings of this study suggest that SEDKF is a clinically heterogeneous disorder that can present with a variety of features. Further studies are needed to better understand the underlying mechanisms of SEDKF and to develop more effective treatments.

2.
Front Mol Biosci ; 11: 1336336, 2024.
Article in English | MEDLINE | ID: mdl-38380430

ABSTRACT

Alternative polyadenylation (APA) increases transcript diversity through the generation of isoforms with varying 3' untranslated region (3' UTR) lengths. As the 3' UTR harbors regulatory element target sites, such as miRNAs or RNA-binding proteins, changes in this region can impact post-transcriptional regulation and translation. Moreover, the APA landscape can change based on the cell type, cell state, or condition. Given that APA events can impact protein expression, investigating translational control is crucial for comprehending the overall cellular regulation process. Revisiting data from polysome profiling followed by RNA sequencing, we investigated the cardiomyogenic differentiation of pluripotent stem cells by identifying the transcripts that show dynamic 3' UTR lengthening or shortening, which are being actively recruited to ribosome complexes. Our findings indicate that dynamic 3' UTR lengthening is not exclusively associated with differential expression during cardiomyogenesis but rather with recruitment to polysomes. We confirm that the differentiated state of cardiomyocytes shows a preference for shorter 3' UTR in comparison to the pluripotent stage although preferences vary during the days of the differentiation process. The most distinct regulatory changes are seen in day 4 of differentiation, which is the mesoderm commitment time point of cardiomyogenesis. After identifying the miRNAs that would target specifically the alternative 3' UTR region of the isoforms, we constructed a gene regulatory network for the cardiomyogenesis process, in which genes related to the cell cycle were identified. Altogether, our work sheds light on the regulation and dynamic 3' UTR changes of polysome-recruited transcripts that take place during the cardiomyogenic differentiation of pluripotent stem cells.

3.
Int J Mol Sci ; 25(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396700

ABSTRACT

Understanding the intricate molecular mechanisms governing the fate of human adipose-derived stem cells (hASCs) is essential for elucidating the delicate balance between adipogenic and osteogenic differentiation in both healthy and pathological conditions. Long non-coding RNAs (lncRNAs) have emerged as key regulators involved in lineage commitment and differentiation of stem cells, operating at various levels of gene regulation, including transcriptional, post-transcriptional, and post-translational processes. To gain deeper insights into the role of lncRNAs' in hASCs' differentiation, we conducted a comprehensive analysis of the lncRNA transcriptome (RNA-seq) and translatome (polysomal-RNA-seq) during a 24 h period of adipogenesis and osteogenesis. Our findings revealed distinct expression patterns between the transcriptome and translatome during both differentiation processes, highlighting 90 lncRNAs that are exclusively regulated in the polysomal fraction. These findings underscore the significance of investigating lncRNAs associated with ribosomes, considering their unique expression patterns and potential mechanisms of action, such as translational regulation and potential coding capacity for microproteins. Additionally, we identified specific lncRNA gene expression programs associated with adipogenesis and osteogenesis during the early stages of cell differentiation. By shedding light on the expression and potential functions of these polysome-associated lncRNAs, we aim to deepen our understanding of their involvement in the regulation of adipogenic and osteogenic differentiation, ultimately paving the way for novel therapeutic strategies and insights into regenerative medicine.


Subject(s)
Adipogenesis , RNA, Long Noncoding , Humans , Adipogenesis/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Osteogenesis/genetics , Cell Differentiation/genetics , Stem Cells/metabolism , Polyribosomes/metabolism
4.
Front Oncol ; 13: 1248964, 2023.
Article in English | MEDLINE | ID: mdl-37781189

ABSTRACT

Background: Common variable immunodeficiency disorders (CVIDs), which are primary immunodeficiencies characterized by the failure of primary antibody production, typically present with recurrent bacterial infections, decreased antibody levels, autoimmune features, and rare atypical manifestations that can complicate diagnosis and management. Although most cases are sporadic, approximately 10% of the patients may have a family history of immunodeficiency. Genetic causes involving genes related to B-cell development and survival have been identified in only a small percentage of cases. Case presentation: We present the case of a family with two brothers who presented with mycosis fungoides as an exclusive symptom of a common variable immunodeficiency disorder (CVID). Whole-exome sequencing of the index patient revealed a pathogenic variant of the NFKB2 gene. Based on this diagnosis and re-evaluation of other family members, the father and brother were diagnosed with this rare immune and preneoplastic syndrome. All CVID-affected family members presented with mycosis fungoides as their only symptom, which is, to the best of our knowledge, the first case to be reported. Conclusion: This case highlights the importance of high-throughput sequencing techniques for the proper diagnosis and treatment of hereditary hematological disorders.

5.
Hum Genomics ; 17(1): 14, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36849973

ABSTRACT

The SPATA5 gene encodes a 892 amino-acids long protein that has a putative mitochondrial targeting sequence and has been proposed to function in maintenance of mitochondrial function and integrity during mouse spermatogenesis. Several studies have associated homozygous or compound heterozygous mutations in SPATA5 gene to microcephaly, intellectual disability, seizures and hearing loss. This suggests a role of the SPATA5 gene also in neuronal development. Recently, our group presented results validating the use of blood cells for the assessment of mitochondrial function for diagnosis and follow-up of mitochondrial disease, minimizing the need for invasive procedures such as muscle biopsy. In this study, we were able to diagnose a patient with epileptogenic encephalopathy using next generation sequencing. We found two novel compound heterozygous variants in SPATA5 that are most likely causative. To analyze the impact of SPATA5 mutations on mitochondrial functional studies directly on the patients' mononuclear cells and platelets were undertaken. Oxygen consumption rates in platelets and PBMCs were impaired in the patient when compared to a healthy control. Also, a decrease in mitochondrial mass was observed in the patient monocytes with respect to the control. This suggests a true pathogenic effect of the mutations in mitochondrial function, especially in energy production and possibly biogenesis, leading to the observed phenotype.


Subject(s)
Brain Diseases , Microcephaly , Animals , Male , Mice , Biopsy , Mitochondria/genetics , Seizures , ATPases Associated with Diverse Cellular Activities/metabolism
6.
Article in English | MEDLINE | ID: mdl-36577524

ABSTRACT

We present the case of a 53-yr-old woman with an inherited bone marrow failure coexisting with uncommon extrahematological symptoms, such as cirrhosis and skin abnormalities. Whole-exome sequencing revealed a diagnosis of Shwachman-Diamond syndrome (SDS) with an atypical presentation. Unexpected was the age of disease expression, normally around the pediatric age, with a predominantly median survival age of 36 yr. To our knowledge, she was the first adult patient with a molecular diagnosis of Shwachman-Diamond in Uruguay. The patient was referred to our service when she was 43-yr-old with a history of bone marrow failure with anemia and thrombocytopenia. All secondary causes of pancytopenia were excluded. Bone marrow aspirate and biopsy specimens were hypocellular for the patient's age. Numerous dysplastic features were observed in the three lineages. She had a normal karyotype and normal chromosomal fragility. A diagnosis of low-risk hypoplastic MDS was made. Dermatological examination revealed reticulate skin pigmentation with hypopigmented macules involving the face, neck, and extremities; nail dystrophy; premature graying; and thin hair. Extrahematological manifestations were present (e.g., learning difficulties, short stature). Last, she was diagnosed with cryptogenic liver cirrhosis CHILD C. This rules out all other possible causes of chronic liver disease. This clinical presentation initially oriented the diagnosis toward telomeropathy, so we did a telomeropathy NGS panel that came up negative. Finally, we did an exome sequencing that confirmed the diagnosis of SDS. Using whole-exome sequencing, we were able to find two compound heterozygous mutations in the SBDS gene that were responsible for the phenotype of a patient that was undiagnosed for 10 years. An earlier genetic diagnosis could have influenced our patient's outcome.


Subject(s)
Bone Marrow Diseases , Exocrine Pancreatic Insufficiency , Female , Humans , Shwachman-Diamond Syndrome/genetics , Exocrine Pancreatic Insufficiency/diagnosis , Bone Marrow Diseases/diagnosis , Bone Marrow Diseases/genetics , Mutation , Proteins/genetics
7.
BMC Pediatr ; 22(1): 545, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36100855

ABSTRACT

BACKGROUND: Lissencephaly (LIS) is a cortical malformation, characterized by smooth or nearly smooth cerebral surface and a shortage of gyral and sulcal development, which is caused by deficient neuronal migration during embryogenesis. Neuronal migration involves many gene products, among which is the product of the PAFAH1B1 gene, associated with this disease. LIS is a rare disease, characterized by low population frequency, and with non-specific clinical symptoms such as early epilepsy, developmental delay or cerebral palsy-like motor problems. Given that high-throughput sequencing techniques have been improving diagnosis, we have chosen this technique for addressing this patient. CASE PRESENTATION: We present the case of a seven years old male patient with an undiagnosed rare disease, with non-specific clinical symptoms possibly compatible with lissencephaly. The patient was enrolled in a study that included the sequencing of his whole genome. Sequence data was analyzed following a bioinformatic pipeline. The variants obtained were annotated and then subjected to different filters for prioritization. Also mitochondrial genome was analyzed. A novel candidate frameshift insertion in known PAFAH1B1 gene was found, explaining the index case phenotype. The assessment through in silico tools reported that it causes nonsense mediated mechanisms and that it is damaging with high confidence scores. The insertion causes a change in the reading frame, and produces a premature stop codon, severely affecting the protein function and probably the silencing of one allele. The healthy mother did not carry the mutation, and the unaffected father was not available for analysis. CONCLUSIONS: Through this work we found a novel de novo mutation in LIS1/PAFAH1B1 gene, as a likely cause of a rare disease in a young boy with non-specific clinical symptoms. The mutation found correlates with the phenotype studied since the loss of function in the gene product has already been described in this condition. Since there are no other variants in the PAFAH1B1 gene with low population frequency and due to family history, a de novo disease mechanism is proposed.


Subject(s)
Frameshift Mutation , Lissencephaly , 1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , Humans , Lissencephaly/genetics , Male , Microtubule-Associated Proteins/genetics , Rare Diseases
8.
PLoS One ; 17(8): e0271097, 2022.
Article in English | MEDLINE | ID: mdl-35960716

ABSTRACT

The ancestry of each locus of the genome can be estimated (local ancestry) based on sequencing or genotyping information together with reference panels of ancestral source populations. The length of those ancestry-specific genomic segments are commonly used to understand migration waves and admixture events. In short time scales, it is often of interest to determine the existence of the most recent unadmixed ancestor from a specific population t generations ago. We built a hypothesis test to determine if an individual has an ancestor belonging to a target ancestral population t generations ago based on these lengths of the ancestry-specific segments at an individual level. We applied this test on a data set that includes 20 Uruguayan admixed individuals to estimate for each one how many generations ago the most recent indigenous ancestor lived. As this method tests each individual separately, it is particularly suited to small sample sizes, such as our study or ancient genome samples.


Subject(s)
Genetics, Population , Polymorphism, Single Nucleotide , Genome, Human , Humans , Uruguay
9.
Mult Scler Relat Disord ; 57: 103383, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34922254

ABSTRACT

Multiple Sclerosis is an autoimmune disease with an unknown etiology. Both genetic and environmental factors are believed to trigger MS autoimmunity. Among the environmental factors, infectious agents have been extensively investigated, and the Human Endogenous Retroviruses (HERVs), especially HERV-W, are believed to be associated with MS pathogenesis. HERVs are derived from ancestral infections and comprise around 8% of the human genome. Although most HERVs are silenced, retroviral genes may be expressed with virion formation. There is extensive evidence of the relationship between HERV-W and MS, including higher levels of HERV-W expression in MS patients, HERV-W protein detection in MS plaques, and the HERV-W env protein inducing an inflammatory response in in vitro and in vivo models. Here we discuss possible links of HERVs and the pathogenesis of MS and present new data regarding the diversity of HERVs expression in samples derived from MS patients.


Subject(s)
Endogenous Retroviruses , Multiple Sclerosis , Endogenous Retroviruses/genetics , Humans , Multiple Sclerosis/genetics , Transcriptome
10.
Front Genet ; 12: 733195, 2021.
Article in English | MEDLINE | ID: mdl-34630523

ABSTRACT

The Amerindian group known as the Charrúas inhabited Uruguay at the timing of European colonial contact. Even though they were extinguished as an ethnic group as a result of a genocide, Charrúan heritage is part of the Uruguayan identity both culturally and genetically. While mitochondrial DNA studies have shown evidence of Amerindian ancestry in living Uruguayans, here we undertake whole-genome sequencing of 10 Uruguayan individuals with self-declared Charruan heritage. We detect chromosomal segments of Amerindian ancestry supporting the presence of indigenous genetic ancestry in living descendants. Specific haplotypes were found to be enriched in "Charrúas" and rare in the rest of the Amerindian groups studied. Some of these we interpret as the result of positive selection, as we identified selection signatures and they were located mostly within genes related to the infectivity of specific viruses. Historical records describe contacts of the Charrúas with other Amerindians, such as Guaraní, and patterns of genomic similarity observed here concur with genomic similarity between these groups. Less expected, we found a high genomic similarity of the Charrúas to Diaguita from Argentinian and Chile, which could be explained by geographically proximity. Finally, by fitting admixture models of Amerindian and European ancestry for the Uruguayan population, we were able to estimate the timing of the first pulse of admixture between European and Uruguayan indigenous peoples in approximately 1658 and the second migration pulse in 1683. Both dates roughly concurring with the Franciscan missions in 1662 and the foundation of the city of Colonia in 1680 by the Spanish.

11.
Mitochondrion ; 61: 31-43, 2021 11.
Article in English | MEDLINE | ID: mdl-34536563

ABSTRACT

Human mitochondrial diseases are a group of heterogeneous diseases caused by defects in oxidative phosphorylation, due to mutations in mitochondrial (mtDNA) or nuclear DNA. The diagnosis of mitochondrial disease is challenging since mutations in multiple genes can affect mitochondrial function, there is considerable clinical variability and a poor correlation between genotype and phenotype. Herein we assessed mitochondrial function in peripheral blood mononuclear cells (PBMCs) and platelets from volunteers without known metabolic pathology and patients with mitochondrial disease. Oxygen consumption rates were evaluated and respiratory parameters indicative of mitochondrial function were obtained. A negative correlation between age and respiratory parameters of PBMCs from control individuals was observed. Surprisingly, respiratory parameters of PBMCs normalized by cell number were similar in patients and young controls. Considering possible compensatory mechanisms, mtDNA copy number in PBMCs was quantified and an increase was found in patients with respect to controls. Hence, respiratory parameters normalized by mtDNA copy number were determined, and in these conditions a decrease in maximum respiration rate and spare respiratory capacity was observed in patients relative to control individuals. In platelets no decay was seen in mitochondrial function with age, while a reduction in basal, ATP-independent and ATP-dependent respiration normalized by cell number was detected in patients compared to control subjects. In summary, our results offer promising perspectives regarding the assessment of mitochondrial function in blood cells for the diagnosis of mitochondrial disease, minimizing the need for invasive procedures such as muscle biopsies, and for following disease progression and response to treatments.


Subject(s)
DNA Copy Number Variations , DNA, Mitochondrial/genetics , Leukocytes, Mononuclear/physiology , Mitochondrial Diseases/diagnosis , Oxygen Consumption/physiology , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Young Adult
12.
Viruses ; 13(9)2021 09 10.
Article in English | MEDLINE | ID: mdl-34578382

ABSTRACT

Uruguay controlled the viral dissemination during the first nine months of the SARS-CoV-2 pandemic. Unfortunately, towards the end of 2020, the number of daily new cases exponentially increased. Herein, we analyzed the country-wide genetic diversity of SARS-CoV-2 between November 2020 and April 2021. We identified that the most prevalent viral variant during the first epidemic wave in Uruguay (December 2020-February 2021) was a B.1.1.28 sublineage carrying Spike mutations Q675H + Q677H, now designated as P.6, followed by lineages P.2 and P.7. P.6 probably arose around November 2020, in Montevideo, Uruguay's capital department, and rapidly spread to other departments, with evidence of further local transmission clusters; it also spread sporadically to the USA and Spain. The more efficient dissemination of lineage P.6 with respect to P.2 and P.7 and the presence of mutations (Q675H and Q677H) in the proximity of the key cleavage site at the S1/S2 boundary suggest that P.6 may be more transmissible than other lineages co-circulating in Uruguay. Although P.6 was replaced by the variant of concern (VOC) P.1 as the predominant lineage in Uruguay since April 2021, the monitoring of the concurrent emergence of Q675H + Q677H in VOCs should be of worldwide interest.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19/transmission , Genome, Viral , Humans , Mutation , Phylogeography , Retrospective Studies , SARS-CoV-2/pathogenicity , Uruguay
13.
BioData Min ; 14(1): 44, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34479616

ABSTRACT

BACKGROUND: Missing data is a common issue in different fields, such as electronics, image processing, medical records and genomics. They can limit or even bias the posterior analysis. The data collection process can lead to different distribution, frequency, and structure of missing data points. They can be classified into four categories: Structurally Missing Data (SMD), Missing Completely At Random (MCAR), Missing At Random (MAR) and Missing Not At Random (MNAR). For the three later, and in the context of genomic data (especially non-coding data), we will discuss six imputation approaches using 31,245 variants collected from ClinVar and annotated with 13 genome-wide features. RESULTS: Random Forest and kNN algorithms showed the best performance in the evaluated dataset. Additionally, some features show robust imputation regardless of the algorithm (e.g. conservation scores phyloP7 and phyloP20), while other features show poor imputation across algorithms (e.g. PhasCons). We also developed an R package that helps to test which imputation method is the best for a particular data set. CONCLUSIONS: We found that Random Forest and kNN are the best imputation method for genomics data, including non-coding variants. Since Random Forest is computationally more challenging, kNN remains a more realistic approach. Future work on variant prioritization thru genomic screening tests could largely profit from this methodology.

14.
Emerg Infect Dis ; 27(11): 2957-2960, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34437831

ABSTRACT

We developed a genomic surveillance program for real-time monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) in Uruguay. We report on a PCR method for SARS-CoV-2 VOCs, the surveillance workflow, and multiple independent introductions and community transmission of the SARS-CoV-2 P.1 VOC in Uruguay.


Subject(s)
COVID-19 , SARS-CoV-2 , Genomics , Humans , Uruguay/epidemiology
15.
J Endocr Soc ; 5(9): bvab115, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34308089

ABSTRACT

Corticosteroid-binding globulin (CBG) is the main transport protein for cortisol, binding up to 90% in a 1:1 ratio. CBG provides transport of cortisol within the circulation and targeted cortisol tissue delivery. Here, we describe the clinically novel "CBG Montevideo" a SERPINA6 pathogenic variant that results in a 50% reduction in plasma CBG levels. This was associated with low serum total cortisol and clinical features of hypoglycemia, exercise intolerance, chronic fatigue, and hypotension in the proband, a 7-year-old boy, and his affected mother. Previous reports of 9 human CBG genetic variants affecting either CBG concentrations or reduced CBG-cortisol binding properties have outlined symptoms consistent with attenuated features of hypocortisolism, fatigue, and hypotension. Here, however, the presence of hypoglycemia, despite normal circulating free cortisol, suggests a specific role for CBG in effecting glucocorticoid function, perhaps involving cortisol-mediated hepatic glucose homeostasis and cortisol-brain communication.

16.
Front Microbiol ; 12: 653986, 2021.
Article in English | MEDLINE | ID: mdl-34122369

ABSTRACT

Uruguay is one of the few countries in the Americas that successfully contained the coronavirus disease 19 (COVID-19) epidemic during the first half of 2020. Nevertheless, the intensive human mobility across the dry border with Brazil is a major challenge for public health authorities. We aimed to investigate the origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains detected in Uruguayan localities bordering Brazil as well as to measure the viral flux across this ∼1,100 km uninterrupted dry frontier. Using complete SARS-CoV-2 genomes from the Uruguayan-Brazilian bordering region and phylogeographic analyses, we inferred the virus dissemination frequency between Brazil and Uruguay and characterized local outbreak dynamics during the first months (May-July) of the pandemic. Phylogenetic analyses revealed multiple introductions of SARS-CoV-2 Brazilian lineages B.1.1.28 and B.1.1.33 into Uruguayan localities at the bordering region. The most probable sources of viral strains introduced to Uruguay were the Southeast Brazilian region and the state of Rio Grande do Sul. Some of the viral strains introduced in Uruguayan border localities between early May and mid-July were able to locally spread and originated the first outbreaks detected outside the metropolitan region. The viral lineages responsible for Uruguayan urban outbreaks were defined by a set of between four and 11 mutations (synonymous and non-synonymous) with respect to the ancestral B.1.1.28 and B.1.1.33 viruses that arose in Brazil, supporting the notion of a rapid genetic differentiation between SARS-CoV-2 subpopulations spreading in South America. Although Uruguayan borders have remained essentially closed to non-Uruguayan citizens, the inevitable flow of people across the dry border with Brazil allowed the repeated entry of the virus into Uruguay and the subsequent emergence of local outbreaks in Uruguayan border localities. Implementation of coordinated bi-national surveillance systems is crucial to achieve an efficient control of the SARS-CoV-2 spread across this kind of highly permeable borderland regions around the world.

17.
Hum Genomics ; 15(1): 28, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33971976

ABSTRACT

BACKGROUND: Rare diseases are pathologies that affect less than 1 in 2000 people. They are difficult to diagnose due to their low frequency and their often highly heterogeneous symptoms. Rare diseases have in general a high impact on the quality of life and life expectancy of patients, which are in general children or young people. The advent of high-throughput sequencing techniques has improved diagnosis in several different areas, from pediatrics, achieving a diagnostic rate of 41% with whole genome sequencing (WGS) and 36% with whole exome sequencing, to neurology, achieving a diagnostic rate between 47 and 48.5% with WGS. This evidence has encouraged our group to pursue a molecular diagnosis using WGS for this and several other patients with rare diseases. RESULTS: We used whole genome sequencing to achieve a molecular diagnosis of a 7-year-old girl with a severe panvascular artery disease that remained for several years undiagnosed. We found a frameshift variant in one copy and a large deletion involving two exons in the other copy of a gene called YY1AP1. This gene is related to Grange syndrome, a recessive rare disease, whose symptoms include stenosis or occlusion of multiple arteries, congenital heart defects, brachydactyly, syndactyly, bone fragility, and learning disabilities. Bioinformatic analyses propose these mutations as the most likely cause of the disease, according to its frequency, in silico predictors, conservation analyses, and effect on the protein product. Additionally, we confirmed one mutation in each parent, supporting a compound heterozygous status in the child. CONCLUSIONS: In general, we think that this finding can contribute to the use of whole genome sequencing as a diagnosis tool of rare diseases, and in particular, it can enhance the set of known mutations associated with different diseases.


Subject(s)
Arterial Occlusive Diseases/genetics , Cell Cycle Proteins/genetics , Heart Defects, Congenital/genetics , Rare Diseases/genetics , Transcription Factors/genetics , Arterial Occlusive Diseases/diagnosis , Arterial Occlusive Diseases/pathology , Arteries/diagnostic imaging , Arteries/pathology , Child , Female , Frameshift Mutation/genetics , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/pathology , Homozygote , Humans , Pedigree , Rare Diseases/diagnosis , Rare Diseases/pathology , Whole Genome Sequencing
18.
Mol Genet Genomic Med ; 9(5): e1622, 2021 05.
Article in English | MEDLINE | ID: mdl-33750045

ABSTRACT

BACKGROUND: The etiology of many genetic diseases is challenging. This is especially true for developmental disorders of the central nervous system, since several genes can be involved. Many of such pathologies are considered rare diseases, since they affect less than 1 in 2000 people. Due to their low frequency, they present several difficulties for patients, from the delay in the diagnosis to the lack of treatments. Next-generation sequencing techniques have improved the search for diagnosis in several pathologies. Many studies have shown that the use of whole-exome/genome sequencing in rare Mendelian diseases has a diagnostic yield between 30% and 50% depending on the disease. METHODS: Here, we present the case of an undiagnosed 6-year-old boy with severe encephalopathy of unclear cause, whose etiological diagnosis was achieved by whole-genome sequencing. RESULTS: We found a novel variant that has not been previously reported in patients nor it has been described in GnomAD. Segregation analysis supports a de novo mutation, since it is not present in healthy parents. The change is predicted to be harmful to protein function, since it falls in the first quarter of the protein producing an altered reading frame and generating a premature stop codon. Additionally, the variant is classified as pathogenic according to ACMG criteria (PVS1, PM2, and PP3). Furthermore, there are several reported frameshift mutations in nearby codons as well as nonsense mutations that are predicted as pathogenic in other studies. CONCLUSION: We found a novel de novo frameshift mutation in the PURA gene (MIM number 600473), c.151_161del, with sufficient evidence of its pathogenicity.


Subject(s)
Brain Diseases/genetics , DNA-Binding Proteins/genetics , Frameshift Mutation , Phenotype , Transcription Factors/genetics , Brain Diseases/pathology , Child , Humans , Male
19.
Mult. scler. relat. dis ; 44: 102243, Sept. 2020. tab, ilus
Article in English | Sec. Est. Saúde SP, SESSP-IIERPROD, Sec. Est. Saúde SP | ID: biblio-1100445

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is an inflammatory autoimmune neurologic disease that causes progressive destruction of myelin sheath and axons. Affecting more than 2 million people worldwide, MS may presents distinct clinical courses. However, information regarding key gene expression and genic pathways related to each clinicalform is still limited. OBJECTIVE: To assess the whole transcriptome of blood leukocytes from patients with remittent-recurrent (RRMS) and secondary-progressive (SPMS) forms to explore the gene expression profile of each form. METHODS: Total RNA was obtained and sequenced in Illumina HiSeq platform. Reads were aligned to human genome (GRCh38/hg38), BAM files were mapped and differential expression was obtained with DeSeq2. Up or downregulated pathways were obtained through Ingenuity IPA. Pro-inflammatory cytokines levels were also assessed. Results: The transcriptome was generated for nine patients (6 SPMS and 3 RRMS) and 5 healthy controls. A total of 731 and 435 differentially expressed genes were identified in SPMS and RRMS, respectively. RERE, IRS2, SIPA1L1, TANC2 and PLAGL1 were upregulated in both forms, whereas PAD2 and PAD4 were upregulated in RRMS and downregulated in SPMS. Inflammatory and neuronal repair pathways were upregulated in RRMS, which was also observed in cytokine analysis. Conversely, SPMS patients presented IL-8, IL-1, Neurothrophin and Neuregulin pathways down regulated. CONCLUSIONS: Overall, the transcriptome of RRMS and SPMS clearly indicated distinct inflammatory profiles, where RRMS presented marked pro-inflammatory profile but SPMS did not. SPMS individuals also presented a decrease on expression of neuronal repair pathways


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Gene Expression Profiling , Multiple Sclerosis
20.
Retrovirology ; 17(1): 18, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32615986

ABSTRACT

BACKGROUND: Some multifunctional cellular proteins, as the monocyte chemotactic protein-induced protein 1 (ZC3H12A/MCPIP1) and the cyclin-dependent kinase inhibitor CDKN1A/p21, are able to modulate the cellular susceptibility to the human immunodeficiency virus type 1 (HIV-1). Several studies showed that CDKN1A/p21 is expressed at high levels ex vivo in cells from individuals who naturally control HIV-1 replication (HIC) and a recent study supports a coordinate regulation of ZC3H12A/MCPIP1 and CDKN1A/p21 transcripts in a model of renal carcinoma cells. Here, we explored the potential associations between mRNA expression of ZC3H12A/MCPIP1 and CDKN1A/p21 in HIC sustaining undetectable (elite controllers-EC) or low (viremic controllers-VC) viral loads. RESULTS: We found a selective upregulation of ZC3H12A/MCPIP1 and CDKN1A/p21 mRNA levels in PBMC from HIC compared with both ART-suppressed and HIV-negative control groups (P≤ 0.02) and higher MCPIP1 and p21 proteins levels in HIC than in HIV-1 negative subjects. There was a moderate positive correlation (r ≥ 0.57; P ≤ 0.014) between expressions of both transcripts in HIC and in HIC combined with control groups. We found positive correlations between the mRNA level of CDKN1A/p21 with activated CD4+ T cells levels in HIC (r ≥ 0.53; P ≤ 0.017) and between the mRNA levels of both CDKN1A/p21 (r = 0.74; P = 0.005) and ZC3H12A/MCPIP1 (r = 0.58; P = 0.040) with plasmatic levels of sCD14 in EC. Reanalysis of published transcriptomic data confirmed the positive association between ZC3H12A/MCPIP1 and CDKN1A/p21 mRNA levels in CD4+ T cells and monocytes from disparate cohorts of HIC and other HIV-positive control groups. CONCLUSIONS: These data show for the first time the simultaneous upregulation of ZC3H12A/MCPIP1 and CDKN1A/p21 transcripts in the setting of natural suppression of HIV-1 replication in vivo and the positive correlation of the expression of these cellular factors in disparate cohorts of HIV-positive individuals. The existence of a common regulatory pathway connecting ZC3H12A/MCPIP1 and CDKN1A/p21 could have a synergistic effect on HIV-1 replication control and pharmacological manipulation of these multifunctional host factors may open novel therapeutic perspectives to prevent HIV-1 replication and disease progression.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/metabolism , HIV Infections/immunology , HIV-1/physiology , Ribonucleases/metabolism , Transcription Factors/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Female , HIV Infections/genetics , HIV Infections/metabolism , HIV Infections/virology , Humans , Leukocytes, Mononuclear/metabolism , Monocytes/immunology , Monocytes/metabolism , RNA, Messenger/metabolism , Ribonucleases/genetics , Transcription Factors/genetics , Up-Regulation , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...